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Melanocytic nevi and melanoma: unraveling a complex
relationship
WE Damsky1 and M Bosenberg1,2

Approximately 33% of melanomas are derived directly from benign, melanocytic nevi. Despite this, the vast majority of melanocytic
nevi, which typically form as a result of BRAFV600E-activating mutations, will never progress to melanoma. Herein, we synthesize
basic scientific insights and data from mouse models with common observations from clinical practice to comprehensively review
melanocytic nevus biology. In particular, we focus on the mechanisms by which growth arrest is established after BRAFV600E

mutation. Means by which growth arrest can be overcome and how melanocytic nevi relate to melanoma are also considered.
Finally, we present a new conceptual paradigm for understanding the growth arrest of melanocytic nevi in vivo termed stable clonal
expansion. This review builds upon the canonical hypothesis of oncogene-induced senescence in growth arrest and tumor
suppression in melanocytic nevi and melanoma.
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INTRODUCTION
Growth arrest after activation of individual oncogenes can prevent
cancer formation. Melanocytic nevi are neoplasms resulting from
the proliferation of melanocytes, the normal pigment-producing
cells in the skin. Nevi are growth arrested, clonal neoplasms of
melanocytes initiated by well-defined oncogenic mutations in the
mitogen-activated protein kinase (MAPK) pathway, most com-
monly by BRAFV600E-activating mutation. In addition, they are
pigmented in nature and located in skin, making nevi readily
identifiable by visual examination and allowing for monitoring in
real time. Given their well-defined genetics and accessibility, nevi
have been used as a model by which to study the growth arrest of
lesions after oncogene mutation.
In this review, the fundamental mechanisms regulating growth

arrest of nevi will be discussed in the context of clinical features
commonly observed in nevi and in light of new observations in
mouse models and human tissue. In addition, although nevus
growth arrest is very robust and the vast majority of nevi will
remain benign over time, a small proportion will progress to
melanoma. Mechanisms by which growth arrest of nevi can be
overcome and lead to melanoma formation will also be
considered. These observations will be integrated into an updated
model of growth arrest of melanocytic nevi after oncogene
activation, a process we call stable clonal expansion. Stable clonal
expansion in nevi is akin to the subclinical clonal expansion
observed in other cell types (including in skin) and is also
discussed below.

HISTORICAL CONTEXT AND ONCOGENE-INDUCED
SENESCENCE
The most well-known hypothesis explaining how individual critical
oncogenes can be activated, yet not give rise to cancer, is termed

oncogene-induced senescence (OIS). The concept of OIS is based
on the phenomenon of replicative senescence (RS), a process
during which cultured cells cease proliferation after a finite
number of passages in vitro.1,2 During RS, cells lose the ability to
re-enter the cell cycle, even in the presence of mitogenic stimuli.3

In culture, senescent cells exhibit a distinct cellular morphology;
they become large, flattened, dendritic and often multinucleated.
Senescent cells express characteristic markers such as senescence-
associated beta-galactosidase (SA-β-gal) and upregulate tumor
suppressors including p16INK4A and p21CIP1.4 RS is thought to
result from progressive shortening of telomeres and is in part
driven by the activation of a DNA damage response that occurs
when telomeres reach a critically shortened length.5,6 RS can be
overcome by expression of telomerase, which can restore and
maintain telomeric DNA.7

The OIS hypothesis dates back to the 1980s, when an
interesting phenotype was noted after the introduction of
individual oncogenes into non-immortalized-cultured cells. Rather
than transforming the cells, oncogene expression instead induced
a senescence-like phenotype.8,9 These observations led to the
early hypothesis that these senescence-like responses have a
tumor-suppressive role in cancer.10,11 More formal support for the
OIS hypothesis came in 1997, when Serrano et al.12 showed that
expression of oncogenic HRASG12V in cultured primary cells
paradoxically induced a permanent G1 cell cycle arrest; with
growth arrested cells exhibiting a morphologic phenotype similar
to the cells that had undergone RS.
Since this time, it has been shown that cells that have

undergone OIS express similar markers to cells that have
undergone RS including: SA-β-gal, H3K9Me3, γ-H2AX and p16INK4A,
among others (discussed further below).4 However, contrary to RS,
in OIS critical shortening of telomeres does not necessarily occur.
Accordingly, expression of telomerase is insufficient to bypass OIS
in culture.13 These observations suggest that despite morphologic
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and biomarker similarities, OIS and RS may be fundamentally
different processes.
Although OIS is well-defined in vitro, it has been more difficult

to identify and study in vivo, where its exact role is debated.14 In
tissue, cells with oncogenic changes exhibit some markers of
senescence, but do not appear to rigidly adhere to the OIS
phenotype as defined in vitro. Further, it has recently been noted
that oncogenic mutations are very common in vivo in phenoty-
pically normal tissue such as skin, and result in ‘invisible’
expansion of a quilt work of numerous, overlapping clonal
lesions.15 Despite these oncogenic mutations resulting in finite
clonal outgrowth, the mutant cells appear to largely maintain their
ability to proliferate, differentiate and perform their normal
functions. In the following sections, the evidence for and against
acquisition of senescence-like features after oncogene activation
in melanocytic nevi will be considered.

MELANOCYTIC NEVI
Natural history
Melanocytes are pigment-producing cells in the skin and typically
reside within the epidermis, at the dermoepidermal junction and
within hair follicles. Several benign neoplasms are derived from
melanocytes and are typically the result of individual oncogenic
mutations.16 This review will focus on the most common of these
lesions, benign-acquired melanocytic nevi (referred to as nevi
from here on).
Many adults have nevi, but their abundance varies tremen-

dously from individual to individual, ranging from just a few nevi
up to hundreds of lesions per person. Nevi are rarely present at
birth and when they are, are known as congenital nevi. Rather,
most nevi form later on in life, typically during the first and second
decades.17,18 Total nevus number in any given individual is
thought to peak during the third decade of life.19 This peak is due
to reduced formation of new nevi (which becomes less common
after 30 years of age) combined with the clinical regression of
some existing nevi. Clinical regression of nevi is a poorly
understood process during which nevi involute and can disappear
entirely. The frequency of nevus regression increases with
advancing age.20,21

Compared with other clinically apparent, benign, but potentially
precancerous lesions, melanocytic nevi are unique as they arise
relatively early in life. In contrast, for example, actinic keratosis,
which can be a precursor of cutaneous squamous cell carcinoma,
are uncommon prior to the age of 40 and become much more
prevalent with advancing age, even into the 80s and 90s.22 The
reason(s) why nevi arise primarily during the first two decades of
life and less so with advancing age is unclear. The reason why
some individuals get only a few nevi, whereas others get
hundreds are also not well understood. In terms of abundance,
a combination of inherited causes and ultraviolet radiation and
other environmental mutagens, are likely at play.23,24 Germline
mutations such as in CDKN2A, which affects both nevus size and
total nevus counts, underlie this phenotype in a small subset of
patients.25–28 Inherited variation in nevus and melanoma risk will
be discussed in more detail below.

Clinical and histopathologic features
Nevi are most often 2–6 mm in size and have a uniform color and
symmetric architecture clinically. Nevi are grouped into one of
three major categories: junctional (melanocytes confined to the
epidermis only), intradermal (confined to the dermis only) and
compound (both an epidermal and a dermal component). The
relationship among these three different types of nevi and what
factor(s) result in the formation of one type versus another are not
well understood. BRAFV600E mutations, which are found in the
majority of nevi, appear to occur with relatively similar frequencies

in all three types, but may be slightly more common in nevi with a
dermal component.29–31 Despite the heterogeneity in clinical and
histologic appearance of these types of acquired nevi, all are
thought to share a relatively similar natural history and relation-
ship to melanoma. For the purposes of this review, all three types
will be considered together. It should be noted that additional
types of benign melanocytic nevi such as: blue nevi,32 Spitz nevi33

and deep penetrating nevi34 exist, however, are relatively less
common and will not be discussed in detail. Dysplastic nevi will be
considered separately below.
Microscopically, nevi are well circumscribed, symmetric and are

composed of melanocytes with a monotonous, banal cytology.
Two cardinal histopathological features of nevi are nesting and
maturation. Nesting refers to the tendency of nevus melanocytes
to form small clusters of cells within tissue (Figure 1). Maturation is
a feature of nevi with a dermal component and refers to a gradual
and progressive change (from superficial to deep) in nest
architecture and melanocyte cytology. As one goes deeper into
the lesion, nest size decreases, cell and nuclear volume decreases,
pigment production decreases and changes in cell shape occur35

(Figure 1).
Cytologic features of maturation have been used to divide the

melanocytes in individual nevi into three groups, types A, B and C.
Type A melanocytes are most similar in morphology to normal
epidermal melanocytes and are found in nests in the most
superficial portions of nevi, including the epidermis and superficial
dermis. Type B melanocytes are found in the mid dermis in
relatively smaller nests and are also relatively smaller in size and
rounder in shape. Type C melanocytes are found primarily as
individual cells in lower portions of the dermis and have a more
spindled/fusiform morphology. The complex architecture
observed in nevi suggests that both cell intrinsic and extrinsic
factors act in concert to shape nevus formation, prevent
uncontrolled growth and maintain homeostasis. In melanoma,
organized nesting and maturation tend to be lost. It is possible
that nesting and/or maturation reflect poorly understood tumor-
suppressive interactions within the tissue microenvironment,
however, there is currently no data to support what (if any) active
role these processes have in constraining nevus growth.

BRAF-ACTIVATING MUTATIONS CAUSE NEVUS FORMATION
Genetics of human nevi
The MAPK pathway is a central activator of cellular proliferation
(Figure 2). RAF proteins are serine/threonine kinases, which when
activated either by upstream mitogenic signals or via activating
mutations, drive signaling through this pathway. In 2002, it was
noted that BRAF-activating mutations, which render its kinase
function constitutively active, commonly occurred in human
cancers, including melanoma.36 BRAF-activating mutations (most
commonly V600E) are present in about 50% of melanomas.37 The
central role of BRAF as a melanoma oncogene is supported by the
marked (albeit typically temporary) responses observed when
BRAF inhibitors are used to treat BRAF-mutant melanomas.37

Constitutive MAPK pathway activation is likely a shared feature of
most melanomas and is achieved through a variety of mechan-
isms including mutation of other components of the MAPK
pathway, such as NRAS and NF1.16,37

In 2003, it was noted that BRAF-activating mutations were also
present in many nevi.38 Most studies have shown that BRAF is
mutated in ~ 80% of nevi.39–41 NRAS mutations have been found
in about 5.9–18.2% of nevi.40 MAPK-activating mutations appear
to be a shared characteristic of most benign cutaneous
melanocytic neoplasms. For example, NRAS mutations are
common in congenital nevi,42 HRAS mutations and copy number
gains are found in in Spitz nevi43 and GNAQ/GNA11 mutations are
present in blue nevi.44 As an important aside, MAPK pathway
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mutations tend to occur in a mutually exclusive fashion in
melanocytic (and other) neoplasms,37 suggesting a functional
redundancy with no added selective advantage of having multiple
mutations in this pathway. In fact, having two different MAPK
pathway-activating mutations may confer a proliferative
disadvantage.45 A variety of approaches have been used to show
that nevi are clonal,16,46–49 suggesting that the formation of nevi
in humans occurs as a result of a single MAPK pathway-activating
mutation in an individual melanocyte.
The etiology of BRAFV600E mutations is debated. Ultraviolet (UV)

light is thought to have a positive role in melanoma pathogenesis
(especially in melanomas arising on chronically sun damaged
skin), and as a group, melanoma genomes carry a tremendous
burden of UV damage.37 Interestingly, however, the T-to-A
transversion that underlies the V600E mutation is not a classic
direct UV signature mutation (C-to-T or CC-to-TT), and the
distribution of nevi clinically does not match the areas of skin

with the highest exposure to UV light. Furthermore, xeroderma
pigmentosum (XP) patients, who are deficient in nucleotide
excision repair needed for optimal repair of UV-induced DNA
changes, have a markedly elevated rate of melanoma formation,
yet only 11% of XP melanomas contain BRAFV600 mutations.50

However, some authors still implicate UV light, arguing that T-to-A
transversions are a rare, but direct byproduct of damage from
UV.51 Other authors have suggested nevus formation could be
stochastic and due to occasional mistakes during DNA replication,
which are then highly selected for and lead to nevus formation.52

Other, unidentified environmental mutagens have been
proposed to have a role. For example, papillary thyroid carcinoma
also commonly carries BRAFV600E mutations, however, in these
neoplasms UV would not be predicted to have a pathogenic role.
Interestingly, it has been noted that certain geographic areas
have increased rates of both papillary thyroid cancer and
melanoma, relative to surrounding areas, suggesting another

Figure 1. Schematic of melanocytic nevus architecture. (a) Low power image of an intradermal melanocytic nevus stained with hematoxylin
and eosin (H&E). The nevus shows features of maturation. (b) Junctional nevi are confined to the epidermis and appear as pigmented macules.
Compound nevi have both an intra-epidermal and dermal component. Intradermal nevi are entirely confined to the dermis. Type A, B and C
melanocytes are morphologically distinct and found at different depths within the skin. With increasing depth, nevi are less pigmented,
smaller, have smaller nuclei, fewer mitoses, increased number of apoptotic cells and increased neural features. Nest size decreases with
maturation. (c) High power images of type A melanocytes in the most superficial portion of the nevus. H&E stained section. (d) Type C
melanocytes in the deepest portion of the nevus showing neural (Schwannian) differentiation. H&E stained section.
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unknown environmental mutagen may have a role in the
formation of BRAFV600 mutations.53 Overall, this issue remains to
be resolved.
Overall, the important hypothesis generated from these

findings is that although individual MAPK pathway mutations
may initiate inappropriate proliferation resulting in nevus forma-
tion, they are not sufficient for melanoma formation in isolation.
This line of reasoning provided a conceptual link between the
formation of nevi and the OIS hypothesis, as in both cases
oncogene activation leads ultimately to a growth arrest pheno-
type rather than cancer formation. A series of important studies
examining the effect of the BRAFV600E mutation in the melanocytic
lineage both in vitro and in mice followed and will be discussed in
the following sections.

Functional evaluation of BRAF-activating mutations
In 2005, Michaloglou et al.54 reported that expression of BRAFV600E

in cultured melanocytes resulted in a rapid proliferative arrest.
Interestingly, there was no clear initial period of proliferative
advantage provided by BRAF mutation, as presumably occurs
in vivo and leads to nevus formation (the timing of growth arrest is
discussed further below). BRAF-mutant melanocytes were found
to exhibit cytologic features and expressed markers of OIS
(p16INK4A and SA-β-gal) in this model.54 In vivo correlates of these
findings included a panel of congenital melanocytic nevi, which
were also shown to stain with OIS markers p16INK4A and SA-β-gal.
As would be predicted based on the OIS hypothesis, the
melanocytes in this panel of nevi exhibited preserved telomere
length.54

In 2006, Gray-Schopfer et al.55 expanded these findings to
common acquired nevi, which were also found to stain positively
for p16INK4A and SA-β-gal. These findings showed that melano-
cytes in nevi share some features with melanocytes that have
undergone OIS in culture. However, despite these similarities, the
cytologic changes exhibited during OIS in vitro (large, flat,
dendritic and multinucleate) do not tend to be reflected in nevus
melanocytes found in tissue. In contrast, nevus melanocytes tend
to be small, mononucleate and relatively less dendritic than

normal melanocytes. Altogether, these observations raise the
possibility that despite the similarity in marker expression,
melanocytes in nevi may be distinct from cultured melanocytes
that have undergone OIS.
The first functional evaluation of BRAF-activating mutations in

the melanocytic lineage in vivo was performed in 2005 in a
zebrafish model. In this model, melanocyte-specific BRAFV600E

expression induced the formation of benign melanocytic prolif-
erations called ‘fish nevi’.56 This study provided support for the
hypothesis that BRAF activation is sufficient to drive nevus
formation, but does not in itself result melanoma formation
in vivo. In 2009, multiple groups, observed that melanocyte-
specific expression of BrafV600E in mice also resulted in the
formation of benign melanocytic lesions akin to human nevi.57–59

The melanocytes composing mouse nevi also expressed senes-
cence markers such as SA-β-gal, but similarly to human nevi did
not assume the morphologic features of OIS melanocytes in
culture. Subsequent work (discussed in more detail below) has
shown that although BrafV600E-induced mouse nevi remain in a
stable growth-arrested state over time, a small subset will later
give rise to melanoma.60 Variability in the penetrance of
melanoma with BrafV600E in mouse models has been observed
and will be discussed further below.58–60

It is now generally accepted that BRAF activation in vitro leads
to OIS and in vivo results in the formation of nevi. On the basis of
the above data, there is undeniably phenotypic overlap between
these two states, however, there are also clear differences. In
addition, the observation that nevi serve as precursor lesions in
about 25% of melanomas suggests that nevi are not inextricably
terminally growth arrested in vivo. Given these differences, it is
unclear if at a functional level these two processes are mediated
by the same, similar, or different mechanism(s). In the following
sections, the relationship between OIS, nevi and melanoma will be
discussed.

RELATIONSHIP BETWEEN NEVI AND MELANOMA
The Clark model of melanoma pathogenesis posits that a series of
steps occur during progression from normal melanocyte to
melanoma.61 These steps include formation of banal nevi, then
dysplastic nevi, then melanoma in situ, and ultimately invasive
melanoma; a path thought to be driven by the progressive
accumulation of pathogenic genetic/epigenetic changes.62

Although linear, step-wise progression may characterize the
natural history of a subset of melanomas, significant evidence
suggests that in most melanomas, progression is more complex
and includes many distinct paths which may be dictated in part by
distinct oncogenic hits (Figure 3).63 Interesting new data from
Bastian and colleagues regarding the sequence of different
mutations in melanocytic neoplasms is discussed below.
Approximately 25–33% of cutaneous melanomas arise from

nevi.64,65 Nevi which do not arise from melanoma are considered
further below. In high-risk patients, such as those with numerous
nevi, this number may be as high as 50%.66 Dysplastic nevi are
also discussed separately below. Transformation of nevi to
melanoma has been shown to occur most commonly in non-
chronically sun damaged (non-CSD) skin (intermittently sun
exposed areas such as the trunk and proximal extremities) in
relatively younger patients. Superficial spreading melanoma is the
most common histologic subtype in these lesions.51,67 One study
suggested that junctional and compound nevi may be relatively
more likely to give rise to melanoma than intradermal nevi, but
this has not been definitively shown.67

In contrast, melanomas that develop in CSD skin (such as the
head and neck) are only rarely associated with nevi.51,67 Some
melanomas arising in CSD skin show a pattern termed lentigo
maligna melanoma. Bastian and colleagues have proposed that
melanomas arising in CSD skin and non-CSD skin are indeed

Figure 2. MAPK pathway alterations in melanoma. RAS (usually
NRAS-activating mutation), BRAF-activating mutations and NF1-
inactivating mutations are common drivers of constitutive MAPK
pathway activation in melanoma. Activation of the MAPK pathway
in isolation provides a strong proliferative signal, but ultimately
negative feedback loops result in growth arrest. *Small proportion
of HRAS, KRAS mutations. **KIT, GNAQ and GNA11 mutations.
Mutation data from The Cancer Genome Atlas.37
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fundamentally different based on divergent genetics. Non-CSD
melanomas have more BRAFV600E and PTEN mutations, whereas
CSD melanomas have more NF1 and TP53 mutations.51 CSD and
non-CSD melanomas likely have distinct natural histories; the
subsequent discussion will be more relevant to non-CSD
melanoma, given the current data available.
In melanomas that arise from pre-existing nevi, remnants of the

original nevus are often evident histologically. Genetic analyses of
such histologically contiguous benign nevus-melanoma pairs
support the hypothesis that the melanoma cells were derived
directly from the nevus cells.31,68–72 Although cases of driver
mutation (that is, RAF/RAS) discordance between paired nevus and
melanoma have been reported70,73 and are interesting mechan-
istically, these cases appear to be much less common and some
may represent coincidental collision lesions between unrelated
nevi and melanomas.
Although a small proportion of nevi will ultimately give rise to

melanoma, the vast majority never will. It has been estimated that
the annual transformation rate of any single nevus ranges from
~1 in 200 000 in individuals under 40 years old to about 1 in
33 000 in men over 60 years old.74 Extended over a lifetime, the
risk of progression of any individual nevus to melanoma is about 1
in 3000 for men and 1 in 11 000 for women.74 For this reason,
prophylactic removal of nevi is not part of clinical practice;
however, screening for progression of nevi and de novo
melanoma development with serial skin examination may result
in identification and treatment of melanomas at earlier stages.
Nevi are also an independent marker of overall melanoma risk.

There is a well-established, positive, dose-dependent relationship
between the total number of melanocytic nevi and the risk of

developing melanoma.75 This increased risk is distinct from the
risk of progression of any individual nevus to melanoma and
applies to (and is additive for) both banal as well as histologically
dysplastic nevi.75 The exact explanation for this observation is not
completely understood, but likely relates to shared genetic and
environmental factors predisposing to melanocyte neoplasia.
The overall low rate of nevus progression to melanoma

suggests that robust tumor-suppressive mechanisms are enacted
following BRAF and other mutations. Understanding how and why
individual nevi progress to melanoma and why individuals with
many nevi are at a higher risk for melanoma formation will be
considered further below.

DYNAMICS OF GROWTH ARREST
The timing of growth arrest after BRAF activation is different
in vitro and in vivo. BRAF activation in vitro leads to nearly
immediate growth arrest (within days) with no clear period of
initially increased proliferation.54 In contrast, BRAF activation
in vivo leads to an initial period of enhanced proliferation leading
to nevus formation, but is ultimately followed by clinical growth
arrest as a mature nevus.59,60 A similar phenotype is observed
after RAS activation, with near immediate induction of a growth
arrest in vitro,12 but an initial period of proliferation in vivo
followed by growth arrest.76 This same pattern has been noted in
other cell types. The reason for this discrepancy in the timing of
growth arrest is unknown, but is explored in the following section.
In mouse models, the proliferation induced by BrafV600E lasts for

14–21 days, after which lesion expansion ceases and a mature
nevus is formed.60 BrafV600E induced nevi remain stable in size over

Figure 3. Natural history of melanocytic lesions. Traditionally progression from normal melanocyte to melanoma has been depicted in a linear
fashion (linear progression), however, in individual lesions, certain stages may be skipped or never occur at all (non-linear progression
pathways). Linear progression through all stages in any individual lesion is probably fairly uncommon. Melanocytes that acquire a BRAFV600E

mutation give rise to banal melanocytic nevi. Melanocytes that acquire NRAS and BRAFnon-V600E mutations may more commonly form de novo
dysplastic nevi. Approximately 2/3 of melanomas arise without a known benign precursor lesion, possibly as a result of late acquisition of a
MAPK pathway mutation in already sensitized melanocyte(s) with other oncogenic changes such at PTEN and/or CDKN2A inactivation. The vast
majority of nevi will never progress to melanoma, many will remain clinically stable over a lifetime, whereas others will regress (dead end
pathways). The most common natural history for nevi is highlighted in yellow. *Some banal nevi may later give rise to dysplastic nevi, but this
is probably fairly uncommon. **It is not clear that dysplastic nevi progress to melanoma more commonly than banal nevi.
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time as mice age.60 When Braf is activated in the context of
melanocyte-specific Cdkn2a inactivation (Braf/Cdkn2a model)
(Figure 4), nevus area is increased about threefold, with a final
area of ~ 0.75 mm2. A similar model based on NrasQ61K and
Cdk4R24C-activating mutations also results in nevi of roughly the
same size.77,78 On the basis of these estimates, mouse nevi, which
are thought to be derived from an individual parental melanocyte,
are composed of ~ 1500 to 3000 melanocytes.77

In humans, it is less clear over what period of time BRAF and
NRAS induced nevus formation occurs, but it perhaps can be
estimated indirectly based on certain clinical observations. For
example, serial nevus photography in children and adolescents
(when rates of new nevus formation are highest) has shown that
most enlarging nevi grow over a period of months up to a year
and then stop.79,80 In a different scenario, eruptive nevi, numerous
new nevi develop within a short period of time in individual
patients. Studies looking at eruptive nevi suggest that formation
of the nevi typically occurs over one to several months.81–83

However, how closely eruptive nevus formation mimics sporadic
nevus formation, and the precise mechanism(s) underlying this
phenomenon are unclear. Taking these observations together, it
could be roughly estimated that nevus formation in humans
occurs as quickly as within 1–2 months, but may take a year
or more.
Most nevi in adults range in size from 2 to 6 mm and have been

estimated to be composed of several tens of thousands up to
hundreds of thousands of melanocytes depending on the size and
type of nevus.16,84 On the basis of this size estimate, roughly 13–
16 rounds of cell division would be required to generate a nevus
from a single precursor melanocyte if clonal expansion occurred
equally among all daughter cells without any loss of progeny.
More rounds of division are likely required as in reality
proliferation is probably not perfectly exponential. Nonetheless,
this estimated number of divisions is importantly significantly
lower than the 60–80 rounds of cell division that would be
required to result in critical telomere shortening,85 consistent with
the observation that telomere length is preserved in nevi and they
do not appear to undergo RS.54,86 If similar logic is applied to
murine melanocytes, 10–11 rounds of division would be required
to form a mouse nevus. In addition, telomeres are much longer in

laboratory mouse strains (50–150 kb) than typically seen in
humans (5–6 and 10–12 kb, adults and newborn humans,
respectively)87 and significant telomere erosion in mouse nevi is
unlikely to occur.
Altogether these data strongly support the hypothesis that at

least in a subset of melanocytes that have acquired BRAFV600E

mutations, growth arrest has significant latency in vivo and does
not occur as quickly as it does in vitro. The reason for this
discrepancy is not entirely clear. One hypothesis is that the
mechanism of growth arrest in vitro is different from that
occurring in vivo. If true, this may be related to the non-
physiologic conditions of cell culture, where cells are already
constitutively proliferating and are in the presence of favorable
concentrations of growth factors and nutrients. This hypothesis is
supported by the differences in time frame of growth arrest and
differences in cytology between growth-arrested cells in vitro and
in vivo.
An alternative hypothesis is that an immediate growth arrest

phenotype analogous to that observed in vitro does occur in vivo,
but is not routinely appreciated because no clinically apparent
lesion develops. In this scenario in order for the formation of a
visible nevus to occur, immediate senescence programs would
need to be either ineffective or somehow rapidly bypassed. Along
these lines, some authors have hypothesized that patients with
relatively fewer nevi are more effectively able to enact an
immediate senescence response after BRAF mutation in melano-
cytes. In these hypothetical patients, although activating BRAF
mutations occur, they rarely result in formation of clinically visible
nevi due to the robust and rapid onset of growth arrest programs.
In contrast, patients with less robust immediate growth arrest
programs would develop more clinically visible nevi, as they
would rely more on secondary mechanisms of growth arrest that
act with longer latency.16 However, which tumor-suppressive
mechanisms potentially act immediately versus those that are
secondary are not well-defined and there is no direct experimental
evidence in support of this hypothesis.
The hypothesis that nearly immediate melanocytic growth

arrest after BRAF activation occurs in vivo predicts that individual
melanocytes or subclinical melanocytic proliferations harboring
BRAFV600E mutations should be detectable in skin. Indeed,

Figure 4. Mouse models of melanocytic nevi and melanoma. BrafV600E mutation in isolation results in the formation of small, growth-arrested
nevi. When Pten in inactivated in the setting of Braf activation (Braf/Pten) no growth arrest is observed; rapid progression to metastatic
melanoma ensues. When Cdkn2a is inactivated in the setting of Braf activation larger melanocytic nevi form, but are still stably growth
arrested. With increasing age, a small proportion of nevi progress to melanoma at rates similar to human nevi. When Lkb1 is inactivated
(constitutive mTORC1 activation) in the setting of Braf activation, growth arrest of nevi is abrogated, but melanoma never forms. When
Dnmt3b is inactivated in the Braf/Pten model, most melanocytic lesions growth arrest, with rare progression to melanoma with advancing age.
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subclinical melanocytic proliferations are encountered as chance
findings in skin excisions for other cutaneous neoplasms.52

However, the frequency with which these lesions occur is not
well characterized and it is not known if they contain
BRAF mutations. Some authors have suggested that many nevi
in humans may never grow larger than 1 mm in size and thus
have been largely overlooked by most studies of nevi in
humans.88

In another example, eruptive nevi, in which numerous new nevi
synchronously appear, BRAFV600E mutations are present in most
lesions. This observation suggests that subclinical BRAF-mutant
melanocytes may have been present and then triggered to grow.
Alternatively, but less likely, new BRAFmutations could be induced
in multiple cutaneous locations over a relatively short time period.
Last, many BRAF-mutant melanomas do not develop from pre-
existing nevi, suggesting either that clinically silent BRAF-mutant
melanocytes preceded the melanoma, or alternatively that BRAF
mutation was instead acquired relatively late in melanomagenesis,
leading to de novo melanoma formation (Figure 3). This issue is
considered more below.

MECHANISMS OF GROWTH ARREST
Several specific mediators of growth arrest after activation of
critical oncogenes have been proposed and are based on both
in vitro and in vivo experimental evidence. Although these
experiments are numerous and have been performed in many
cell types, the following sections will focus primarily on experi-
ments performed in the melanocytic lineage. Where possible
in vitro and in vivo data will be discussed together.

Negative feedback within the MAPK pathway
Although BRAF mutation and activation of the MAPK pathway is
important in nevogenesis, MAPK pathway activation do not
appear to be sustained at high levels in nevi after growth arrest.
Time-course studies performed by our group in the Braf/Cdkn2a
mouse model of nevus formation show that the MAPK pathway is
activated only transiently after Braf mutation and corresponds to
the phase of active melanocyte proliferation during nevus
formation.60 MAPK activity is significantly lower during stable
growth arrest in this model. As might be predicted, the MAPK
pathway is re-activated at high levels in melanoma.60 Analysis of
human nevi shows a similar pattern, with relatively low levels of
MAPK pathway activation in nevi relative to melanoma.89–91

Retention of low levels of pathway activity may be supported by
the observation that treatment of patients with BRAF inhibitors
results in changes in the appearance of pre-existing BRAF-mutant
nevi.92,93 BRAF-mutant melanomas show high levels of MAPK
pathway activation and are clearly dependent on BRAF-induced
MAPK pathway activation given the efficacy of BRAF and MEK
inhibitors.94

The mechanisms by which MAPK signaling in nevi is attenuated
during growth arrest are not well characterized. Negative
feedback loops involving dual specificity MAPK phosphatases
(MKPs or DUSPs) or Sprouty proteins are defined inhibitors of the
MAPK pathway generally, but have not been carefully studied in
nevi.95–97 Progression to melanoma appears to rely in part upon
reactivation of MAPK signaling,60 which may be facilitated by copy
number gains and upregulation of mutant BRAF, but ultimately is
likely also related to disruption of negative feedback loops.91,98

Concomitant dysregulation of additional pathways (such as PI3K/
AKT and mTOR) appears to facilitate sustained MAPK pathway
activation in melanoma59,60 and will be discussed further below.

CDKN2A
The CDKN2A locus encodes two distinct proteins, p16INK4A and
p14ARF, both of which are considered bonafide tumor suppressors

in melanoma. p16INK4A opposes Cyclin D-Cdk4/6 mediated cell
cycle progression through the G1/S restriction point via phosphor-
ylation of pRB.99 More recently, Cyclin D-Cdk4 has been implicated
in regulating cellular glucose metabolism independently of cell
cycle progression.100 p14ARF (p19Arf in mice) inhibits MDM2-
mediated degradation of p53 and may also function as a tumor
suppressor by opposing ribosome production.101 Metabolic
implications of CDKN2A loss will be discussed in more
detail below.
CDKN2A is the prototypic familial melanoma susceptibility locus

and accounts for ~ 40% of familial melanoma. Multiple different
germline mutations resulting in loss-of-function of one copy of
p16INK4A and/or p14ARF have been reported in melanoma
kindreds.102,103 The clinical phenotype in many patients with
germline CDKN2A mutations is characterized by an increased
abundance and larger size of nevi25,26 and a significantly increased
risk of developing cutaneous melanoma.104,105 However, a subset
of these patients do not have elevated nevus counts, yet are still at
an increased risk for developing melanoma. The observed
alteration in nevus size and number may argue that CDKN2A
gene products have a role in rapid induction of growth arrest, and
when impaired nevus melanocytes must rely on other mechan-
isms that act with longer latency. In the nevi in these patients, one
normal copy of the CDKN2A locus is still thought to be
expressed.106 CDKN2A mutations are also very common in
sporadic melanomas. Inactivation of one copy of CDKN2A is also
common in melanoma in situ; inactivation of both copies is more
commonly found in advanced melanomas.37,51,98 Altogether,
these observations suggest that in humans there is a complex
and potentially dose-dependent effect of inactivating mutations in
CDKN2A in nevus and melanoma biology.
Both p16INK4A and p14ARF are canonical tumor suppressors and

have also been implicated in growth arrest after oncogene
inactivation at a functional level. p16INK4A in particular is highly
upregulated in cells that have undergone both OIS and RS, and is
one of the most commonly used markers of these states.107,108 In
human melanocytic lesions, p16INK4A staining is typically higher in
nevi than in melanomas, where expression tends to be reduced or
lost entirely.109–112 Interestingly, at a functional level, neither
p16INK4A nor p14ARF appear to be required for induction of OIS
phenotypes in melanocytes in vitro.113 Similarly, they do not
appear to be required for growth arrest in vivo. For example,
simultaneous inactivation of both p16Ink4a and p19Arf in the Braf/
Cdkn2a mouse model does not abrogate BrafV600E-induced growth
arrest (Figure 4).60 However, similarly to patients with germline
CDKN2A mutations, Braf-induced mouse nevi are both more
numerous and larger when Cdkn2a is disrupted.60

The in vivo data from mice and humans suggest that CDKN2A
inactivation results in a temporary disruption, but not abrogation
of growth arrest, and that in the absence of CDKN2A, other growth
arrest programs can still control growth of the lesions. However, in
the Braf/Cdkn2a mouse model, the additional loss of Cdkn2a
(compared with Braf activation alone) has the important effect of
increasing melanoma penetrance from near 0 to 100%.59,60

Interestingly, this increase in melanoma penetrance appears to
be independent of growth arrest of nevi in the Braf/Cdkn2amodel.
Although robust growth arrest of nevi is observed, a small subset
of nevi will progress to melanoma as mice age. Interestingly, the
progression rate in this model is similar to that observed in other
mouse nevus models and in human nevi.60,77 Dhomen and
colleagues also noted that in Braf-mutant melanocytes, that
p16INK4a loss was not required for senescence in vivo, but its loss
did increase tumor penetrance and decrease tumor latency.58

These models and factors regulating progression of nevi to
melanoma will be discussed further below.
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DNA damage response and p53
The role of DNA damage responses (DDR) have been intensively
studied in cells that have undergoing OIS in culture. In 2006, it was
shown that introduction of MAPK-activating mutations such as
activated HRAS into cultured cells induced a DNA hyper-
replication phenotype causing replication stress and resulting in
double stranded DNA breaks. In these models, double strand
breaks triggered DDR programs, which were themselves required
for effective enforcement of OIS.114,115 More recently, multiple
groups have shown that natural depletion of cellular nucleotide
pools after oncogene-induced hyper-replication may also lead to
replication stress and contribute to activation of DDR during
OIS.116–118

The functional role of DDR programs in the growth arrest of
nevi, however, is less clear. An initial evaluation of dysplatic nevi
and melanomas showed that markers of DDR (such as, γ-H2AX
and CHK2) were present in both types of lesions, but not normal
skin.119 Subsequent analyses show that banal nevi also express
γ-H2AX, at levels that appear to be higher than normal
melanocytes, but lower than melanoma.120,121 These data can
be interpreted in different ways. For example, one could argue
that a DDR, which was initially effective in enforcing growth arrest,
has become ineffective (but is sustained) in melanoma, which
would explain the higher levels in melanoma relative to nevi.
Alternatively, is also possible that a stronger, but transient DDR
occurs during growth arrest, but is not sustained during
homeostatic conditions after growth arrest.
p53 is a potent tumor suppressor and is a central regulator of

DDRs.122,123 In melanoma, the TP53 gene is mutated at relatively
low rates compared with most other solid malignancies.37,98 TP53
mutations are enriched in melanomas arising on CSD skin and
associated with thicker invasive melanomas, but tend to be
relatively less common in non-CSD melanomas.37,51,98 Immuno-
histochemical analysis of histologically contiguous human nevus-
melanoma pairs has shown that the melanoma portion of the
lesions tend to have higher p53 expression, whereas p53
expression is relatively lower in the nevus portion of the
lesion.110 However, these data are difficult to interpret in the
absence of knowing the TP53 mutational status.
Studies testing the functional role of p53 loss on nevus

formation in mice have been performed. In the Braf/p53 model
developed by our group, where p53 is simultaneously inactivated
in BrafV600E -mutant melanocytes, stable growth arrest of nevi still
occurs despite the absence of functional p53 and an impaired
p53-dependent DDR.60 However, similarly to the Cdkn2a/Braf
model, inactivation of p53 results in an increased total number of
nevi, larger nevi, but nevi that still growth arrest (Figure 4).
However, as in the Cdkn2a/Braf model, 1–4 melanomas typically
arise within 100 days of life in these mice.60 Viros et al.124 also
found that inactivation of p53 in the setting of Braf activation
leads to increased melanoma formation in mice. Altogether, these
observations suggest that p53 and DDR do not have an obligate
role in growth arrest of nevi, but do alter the phenotype of nevi
slightly and regulate the rare, stochastic progression to melanoma.
This is perhaps not surprising as there are likely multiple levels of
protection from transformation after BRAF activation.

Epigenetics
Epigenetics broadly refers to chromosomal alterations that affect
processes such as gene expression, but do not change the actual
DNA sequence. DNA methylation and histone modifications are
common examples of epigenetic alterations. Epigenetics and
epigenetic regulators are known to be dysregulated in cancer
including melanoma and in many instances contribute to cancer
formation and progression.125 In this section, the role of
epigenetics in the formation nevi and subsequent progression
to melanoma will be discussed.

In nevi, ultrastructural studies using electron microscopy have
shown that heterochromatin (more tightly packed, less transcrip-
tionally active) predominates over euchromatin (relatively less
condensed, more transcriptionally active). Not surprisingly, in
melanoma, euchromatin predominates.126,127 This pattern is
common when compared between benign and malignant lesions
in other tissues. In fact, one of the most commonly used markers
of senescence, senescence-associated heterochromatic foci
(SAHF), reflects an epigenetic modification, which leads to
heterochromatin formation. SAHF were initially described in vitro
and functionally are thought to promote senescence by silencing
of E2F target genes by affecting chromatin structure. E2F target
genes are critical for cell cycle progression from G1 to S phase.128

SAHF are detected using antibodies specific for trimethylation of
lysine-9 of histone H3 (H3K9me3); however, this marker can be
difficult to quantitate.
Heterochromatin formation in nevi has been proposed to be

mediated by specific factors, including histone deacetylase 1
(HDAC1), the activity of which can be partially inferred by
H3K9me3 staining.129 Although initial evidence suggested HDAC1
was upregulated in nevi, subsequent analyses found H3K9me3
staining to be essentially equivalent in nevi and melanomas.120,129

Other studies have implicated the expression of histone variant
macroH2A in heterochromatin formation in nevi, with expression
of macroH2A tending to be lost with progression to melanoma.130

MacroH2A may promote the senescence-associated secretory
phenotype131 (discussed below).
DNA methylation is globally dysregulated in melanoma. For

example, tumor suppressor genes are commonly silenced by
hypermethylation of GpG islands at promoter sites.132 In fact
aberrant DNA methylation may be the most common genomic
alteration in melanoma, with certain loci being methylated in
495% of melanomas.133 Several groups have characterized the
differences in DNA methylation patterns between nevi and
melanoma.134–137 Detection of certain epigenetic marks may be
usefully clinically and are being developed as serum biomarkers
for melanoma.138

In 2012, Lian et al.139 showed that the specific epigenetic
modification, hydroxymethylation at the 5 position of cytosine
(5-hmC), was common in nevi, but was nearly universally lost in
melanoma.139 Follow-up studies have confirmed this pattern.140

The mechanism by which this epigenetic change is regulated and
the functional significance in melanocytic lesions is not comple-
tely clear. Isocitrate dehydrogenase 2 (IDH2) and ten-eleven
translocation (TET) proteins, such as TET2 may have a role in
induction of 5-hmC in nevi.139,141 Functional evaluation of the role
of this modification in nevus and melanoma formation in vivo is
likely to be very informative. The latency with which growth arrest
in nevi occurs after BRAF mutation may also argue that epigenetic
modifications (which may take time to take effect), have an
important role in constraining growth.
Epigenetic modifications can also have a permissive role in

melanomagenesis. For example, DNMT3B is a DNA methyltrans-
ferase responsible for de novo DNA methylation. In a study from
our group, we found that inactivation of Dnmt3b in the highly
penetrant and rapidly lethal Braf/Pten mouse model (Figure 4)
markedly impaired melanoma formation and rather, resulted in
the formation of nevus-like growths through a mechanism
discussed below.142 This observation provides strong evidence
to support the hypothesis that epigenetic modifications (specifi-
cally de novo methylation of DNA) are required for melanocytic
proliferations to grow beyond a nevus-like size, even in the
presence of Braf and Pten mutations that would otherwise lead to
melanoma formation. DNA methylation may regulate feedback
loops that might otherwise limit MAPK and PI3K signaling, which
are thought to be required for melanoma growth.
Other epigenetic regulators have been proposed to have a role

in melanomagenesis, but will only be mentioned briefly. JARID1B
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(KDM5B) is expressed at higher levels in melanoma than nevi,143

and has been shown to be required for continuous growth of
melanoma in experimental models.144,145 SETDB1 is a methyl-
transferase responsible for H3K9me3 methylation (as seen in
SAHF) that interestingly has actually been shown to be recurrently
amplified in melanoma.146 Germline SETDB1 sequence variants
have been shown to confer increased susceptibility to melanoma
formation.147 The SWI/SNF (switch/sucrose nonfermentable) com-
plex regulates chromatin remodeling via nucleosome sliding;
components of this complex have been shown to be recurrently
mutated in melanoma.37,148,149 Last, EZH2, a histone methyltrans-
ferase is mutated in a small proportion of melanomas,37,149 and
has been noted to be upregulated in melanomas compared with
nevi;150 however, the functional role of this protein in melanocytic
lesions is not well understood yet.
Modification of gene expression by non-coding RNAs is often

considered along with epigenetics. Gene product regulation by
microRNAs (miRNAs) in particular is likely to have an important
role in both establishment and escape from growth arrest. For
example, using the Braf/Cdkn2a model, we found that miR-99a,
miR-99b and miR-100 are upregulated after Braf activation and
likely help to enforce growth arrest via downregulation of mTOR
signaling60 (mTOR is discussed in detail below). miR99/100 are
expressed at high levels in human nevi relative to melanoma,
consistent our observations in mice.151,152 In addition, using the
Dnmt3b/Braf/Pten model discussed above, we identified miR-196B
as an important suppressor of mTORC2 activation after Pten loss,
by targeting mTORC2 component Rictor.142 Other microRNAs also
appear to be involved in melanoma pathogenesis at various
stages and have been recently reviewed.153 Long non-coding
RNAs such as MIR31HG and have been reported to have a role in
BRAF-induced OIS in vitro,154,155 but have yet to be studied in nevi.

Cellular metabolism
In recent years, study of metabolic alterations in cancer cells has
regained focus. Metabolic reprogramming is central to cancer
formation and progression, and is classically referred to as the
Warburg effect. In normal cells, under conditions of normoxia,
glucose if fully oxidized to carbon dioxide via the citric acid cycle
and mitochondrial oxidative phosphorylation. This pathway is very
efficient in terms of ATP production. Glycolysis, the alternative
pathway of glucose metabolism, is less energetically efficient and
most normal cells is only used under conditions of hypoxia. Cancer
cells, however, preferentially metabolize glucose via glycolysis
regardless of oxygen abundance.156 Although less efficient in
terms of ATP production, glycolytic pathways generate molecules
useful in nucleotide, amino acid and lipid synthesis, and facilitate
generation of biomass.157 Rapid glucose uptake by cancer cells is
so conserved that a clinical imaging modality commonly used in
cancer patients (fludeoxyglucose positron emission topography or
FDG-PET) specifically measures this aberration to localize cancer
within the body. Specific mediators of metabolic reprogramming
in cancer cells are beginning to be understood and their role in
nevus and melanoma formation will be considered in this section.
Early studies in senescence and OIS showed that although

senescent cells permanently exit from the cell cycle, they maintain
metabolic activity.12,158,159 Since this time, several groups have
shown that oxidative phosphorylation favors development and
maintenance of OIS, possibly by generating redox stress.160–163

Consistent with this hypothesis, introduction of BRAFV600E into
cultured fibroblasts promotes oxidative phosphorylation by
inhibiting pyruvate dehydrogenase kinase 1 (PDK1).160 Pyruvate
kinase is a second regulator of glycolysis and has also been
implicated in metabolic reprogramming of cancer cells. The M2
splice isoform of pyruvate kinase (PKM2) has been shown to be
preferentially upregulated in cancers and may specifically induce a
Warburg metabolism.164,165 As a side-note, despite this

observation, a subset of melanomas appear to maintain and
tolerate high levels of oxidative phosphorylation by upregulating
reactive oxygen species (ROS) detoxification capacity.166

PDK1 levels tend to be higher in human nevi than in
melanoma,167 consistent with the hypothesis that oxidative
phosphorylation is the predominate means by which glucose is
metabolized in nevi. PKM2 levels have not been specifically
compared between nevi and melanomas. Functional analysis of
nevi in vivo at a microscopic level in the Cdkn2a/Braf mouse model
using an imaging modality analogous to FDG-PET (2-NBD glucose
uptake) showed that nevi do not take up glucose at high levels
(whereas the melanomas that develop in this model do).60 In our
experience in clinical practice, human nevi, including nevi larger
than 1 cm2 are also not FDG-PET positive. On the basis of these
observations, it is reasonable to hypothesize that restriction of
Warburg metabolism is likely an important factor that limits nevus
growth after BRAF mutation; however, how specifically this occurs
in nevi remains unclear.
In general, several other factors have been proposed to drive

metabolic reprogramming in cancer and include C-MYC and
HIF-1α.168–170 In melanocytes, over expression of C-MYC has been
shown to suppress OIS in vitro,171 though whether or not this
effect was related to changes in cellular metabolism was not
studied. C-MYC transcriptional activity is thought to be higher in
melanomas than in nevi, consistent with this hypothesis.171,172 In
terms of HIF-1α, one study found higher levels of HIF-1α in
melanomas than in nevi.173 In the Braf/Pten model, inactivation of
HIF-1α and HIF2α does not affect primary tumor formation, but
does decrease metastasis.174

Interestingly, although in isolation BRAFV600E mutation promotes
oxidative phosphorylation, in a fully transformed state, such as
melanoma, mutant BRAF alternatively appears to promote
glycolysis and support the Warburg effect.175 For example, in
patients with BRAF-mutant melanomas treated with BRAF
inhibitors, a rapid and marked reduction in glucose uptake
(including by FDG-PET) is observed; this change has been shown
to correspond to a decrease in volume of melanoma cells.176,177

The differential role of BRAF in these two contexts is likely a
reflection of whether BRAF activation occurs in relative isolation
(as in nevi) or rather occurs in the context of other cooperative
driver mutations, which likely cooperate to coordinately dysregu-
late cellular metabolism promoting the Warburg effect. For
example, dysregulation of the PI3K/AKT and mTOR pathways in
melanoma appear to have a central role in the metabolic
reprogramming of melanoma cells and allowing outgrowth of
BRAF-mutant melanocytes as melanoma (the role of these
pathways will be discussed in detail below).

Autophagy and endoplasmic reticulum stress
Several studies have suggested that autophagy has an important
role in OIS. Autophagy is a process by which cellular proteins and
organelles can be degraded under unfavorable conditions to
generate both energy and macromolecular building blocks. When
autophagy is activated, cellular substrates are encircled by
autophagic vesicles and delivered to lysosomes for bulk
degredatation.178 A variety of cellular stressors can activate
autophagy, including oncogene activation.178,179

Activation of autophagy has been proposed to promote OIS in
part by facilitating the senescence-associated secretory pheno-
type (SASP) in senescent cells.179 SASP is discussed in more detail
below. Interestingly, SA-β-gal which is commonly used as a marker
of senescent cells, labels lysosomes and may reflect increased
levels of autophagy.180,181 Complicating interpretation of the role
of autophagy in melanomagenesis is the observation that
autophagy can alternatively promote or repress tumorigenesis in
different contexts . For example, autophagy promotes tumor cell
survival in the setting of anti-cancer therapy, including during
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treatment with BRAF-mutant melanomas with BRAF
inhibitors.182,183

These seemingly disparate roles for autophagy are perhaps
reconcilable if one considers the context in which they occur. For
example, a study in mice showed that inactivation of autophagy
had opposite effects based on whether or not functional p53 was
present. In this study, when p53 is intact (that is, early in
tumorigenesis) autophagy has a tumor-suppressive function,
however, when p53 is lost (that is, as later in tumor progression),
autophagy alternatively promotes tumor progression.184 The role
of autophagy in cancer more broadly was recently reviewed.162

Analysis of human melanocytic lesions supports the hypothesis
that autophagy has a context-dependent role. Immunohistochem-
ical analyses have shown that relative to early melanomas, nevi
show increased staining for markers of autophagy including LC3B,
Beclin1 and ATG5.185–187 However, when comparing levels of
autophagy in primary versus metastatic melanoma, metastatic
lesions appeared to have higher levels of autophagy based on
LC3B staining.188,189 These findings appear to support the
hypothesis that autophagy correlates with growth arrest in nevi,
but may also promote progression of melanoma once it becomes
invasive.
Ultrastructural analysis of nevi has shown that the number and

size of most cytoplasmic organelles decrease from superficial
dermal cells to deeper dermal cells, which correlates with a
marked reduction in cell size/volume.190 It could be hypothesized
that levels of autophagy increase as a function of depth within the
dermis, possibly explaining the decrease in cell size and organelle
content. Maturation in nevi is discussed above and summarized in
Figure 1. In this scenario, autophagy might be induced in
melanocytes as they leave the epidermis/superficial dermis and
venture further into the potentially less favorable microenviron-
mental conditions in the mid and deep dermis. Interestingly,
Ivanov et al.191 have shown that increased autophagy-mediated
degradation of histones occurs along with maturation and
increases in deeper portions of the nevi. However, previous
ultrastructural analyses were not able to detect changes in the
number of autophagosomes as a function of nevus maturation.190

Further study will be required to more clearly delineate any
possible relationship between autophagy and maturation and the
potential functional relevance of either process to growth arrest
of nevi.
Endoplasmic reticulum (ER) stress occurs in the setting of very

high levels of protein translation when misfolded and unfolded
proteins accumulate in the ER, leading to an unfolded protein
response (UPR).192 Activation of ER stress/UPR promotes cell
survival under such adverse conditions by decreasing rates of
translation and promoting degradation of misfolded proteins.182

The high levels of protein translation that occur after oncogene
activation is one setting in which ER stress can occur.192 ER stress
can also activate autophagy, a process which has been implicated
in resistance of BRAF-mutant melanomas to BRAF inhibitors.182,192

In 2006, Denoyelle et al.193 reported that HRAS, but not BRAF or
NRAS activation triggered ER stress in the melanocytic lineage.193

HRAS mutations are more common in Spitz nevi, but relatively
uncommon in acquired nevi. In this study, although evidence of
sustained ER stress was noted in Spitz nevi, it was not evident in
more typical acquired nevi. Subsequent analysis of melanocytic
lesions using GRP78, a marker of ER stress, showed low levels of ER
stress in nevi, but much higher levels in melanoma.194 In
summary, the role of ER stress in the growth arrest of nevi, if
any, remains unclear.

Microenvironmental mediators
A major difference between in vivo and in vitro systems is the
presence or absence of a physiologic microenvironment. In vivo,
the tissue microenvironment consists of multiple cellular and non-

cellular entities, which directly and indirectly interact with
melanocytes and undoubtedly influence their behavior. It can be
hypothesized that features of nevi observed in tissue, but not in
growth-arrested BRAF-mutant melanocytes in culture, such as
nesting and maturation, may be a reflection of interactions among
nevus melanocytes and with the tissue microenvironment
(Figure 1). During maturation, melanocytes become smaller, less
pigmented and change their shape. Further, within nests
themselves, melanocytes at the edges of the nest tend to be
smaller, whereas those centrally tend to be larger. These patterns
suggest that the phenotype of an individual melanocyte is
influenced by its position within the nevus and within in the skin.
The specific factors regulating nesting and maturation are

difficult to study and not well understood. In terms of maturation,
a study by Perez et al.195 showed that levels of the matrix
metalloproteinase MT1-MMP, an extracellular matrix degradation
enzyme, differ as a function of nevus maturation. However, it is
unclear if or how MT1-MMP is functionally related to maturation or
nesting. Extracellular matrix composition is thought to vary
significantly between nevi and melanomas, however the specific
factors which influence nevus nesting and maturation are not
known.196,197

The likely importance of nesting and maturation in tumor
suppression is underscored by the observation that in melanoma
these features tend to be disrupted. In fact, patterns of nesting
and maturation are key histologic features used by dermato-
pathologists to distinguish nevi from melanoma in biopsy
specimens. In melanoma, nest morphology is altered with nests
tending to be larger, irregularly sized and/or more tightly packed,
whereas in some melanomas the nesting phenotype is lost almost
entirely. Similarly, maturation is lost in melanoma. Although the
factors that mediate these processes are poorly understood, they
are likely to have an important role in nevus formation, and at
least in part, reflect a regulatory influence of the tissue
microenvironment.
In skin biopsies, both normal individual melanocytes, as well as

nevus melanocytes appear to prefer to be in close association with
keratinocytes. Melanocytes in tissue tend to be concentrated in
areas adjacent to both basal interfollicular and follicular keratino-
cytes. This observation also appears to be true in vitro also.
Cultured melanocytes prefer to be associated with and grow
better in association with keratinocytes. For this, reason a
keratinocyte feeder layer is often used in the culture of
melanocytes.198 The specific signals that underlie this phenom-
enon and whether or not proximity to keratinocytes in the
epidermis has a role in the process of maturation in nevi is
not known.
Nevus melanocytes likely interact with other cells in their

microenvironment actively through secreted molecules. For
example, senescent cells including those that have undergone
OIS are highly secretory, a characteristic termed the SASP.162 SASP
has been shown to have a functional role in growth arrest through
propagation of this phenotype in an autocrine/paracrine manner.
SASP has even been proposed to activate immune surveillance of
lesions in tissue.199,200

In the setting of BRAFV600E mutation, specific secreted factors
including both inflammatory (IL-1, IL-6 and type I
interferons)201,202 and non-inflammatory (IGFBP7)203 factors have
been reported to influence growth arrest phenotypes. For
example, secretion of IGFBP7 was shown to drive BRAFV600E-
induced OIS in melanocytic neoplasms in 2008 by Wajapeyee
et al.,203 however, these findings have been debated in the
literature.204,205 Interestingly, IGFBP7 can inhibit signaling through
the IGF-1 receptor (IGF1R).206 We have found that Igf1r activation
and in turn activation of PI3K/AKT signaling is associated with
progression of nevi to melanoma in the Cdkn2a/Braf mouse model
and hypothesize this is an important oncogenic driver in PTEN
wild-type melanomas, by providing an alternate way to activate
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PI3K/AKT signaling.60 In human specimens, nevi tend to have
lower levels of IGF1R expression than melanoma,207 consistent
with this hypothesis. This link between IFGBP7 and IGF1R in nevi
and melanoma is only hypothetical.
In terms of secreted inflammatory mediators, upregulation of

IL-6 and IL-8 have been shown to occur after BRAF activation
in vitro and are thought to reinforce senescence in a cell
autonomous manner.201 Other inflammatory mediators such as
IL-1 have been shown to regulate paracrine senescence in other
models.200 Type I interferons have recently been shown to have an
important non-cell autonomous role in growth arrest after BRAF
activation202 and will be discussed further in the following section.
In human tissue, both IL-1 and IL-6 are upregulated in benign

nevi relative to dysplastic nevi and melanoma.208 Altogether,
these observations are consistent with a growth suppressive role
for these interleukins, however, it remains unclear to what degree
in vivo these and other inflammatory mediators act at by
inhibiting melanocyte growth directly versus activating immune
surveillance. The role of the immune system in suppression of
melanocytic neoplasia will be the focus of the following section.

Role of the immune surveillance
The immune system likely has a role in controlling growth of nevi
and preventing progression to melanoma. The ability of the
immune system to interact with melanocytes in a functionally
relevant manner is supported by several clinical observations. For
example, vitiligo is a condition characterized by complete loss of
melanocytes in affected areas of skin leading to the formation of
depigmented patches. Although vitiligo pathogenesis is complex,
melanocyte depletion is thought to be at least in part mediated by
targeted destruction by CD8+ cytotoxic T cells.209,210 In a similar
example, halo nevi, nevus melanocytes are targeted for destruc-
tion by the immune system. In halo nevi, nevus melanocytes are
recognized and destroyed by CD8+ T cells leading to formation of
a depigemented patch of skin around a pre-existing nevus and
sometimes disappearance of the nevus altogether.211,212

Melanoma is associated with a relatively high mutation burden
and is considered an immunogenic cancer.37,213 It has long been
hypothesized that rare cases of spontaneous regression of
metastatic melanoma are related to immune-mediated tumor
recognition and destruction.214 In the 1970s, it was noted that a
subset of patients responded to early immune-based therapies
such as bacillus calmette-guerin.215–217 Since this time, we have
learned that systemic immune stimulatory therapies such as high
dose IL-2 can induce durable tumor remission in a small subset of
patients with metastatic melanoma.218 Most recently, blockade of
inhibitory immune checkpoints using inhibitors of CTLA-4 and
PD-1 have been shown to induce durable anti-tumor responses in
a subset of melanoma patients.219 One case of CTLA-4 inhibitor-
induced regression of benign nevi has been reported to date,
suggesting checkpoint inhibitors can also stimulate recognition
and destruction of nevus melanocytes.220 Vitiligo-like depigmen-
tation can also occur in patients with melanoma treated with
checkpoint inhibitors (or spontaneously) and is considered a good
prognostic sign.221

An additional informative clinical observation from patients
relates to immunosuppression. Immunosuppressed patients such
as solid organ transplant recipients and patients with chronic
lymphocytic leukemia have an approximately twofold increased
incidence of invasive melanoma compared with non-
immunosuppressed individuals.222–224 This observation suggests
that adaptive immunity has a role in suppressing melanoma
formation and/or progression. Importantly, though, the increased
risk of melanoma in immunosuppressed patients is relatively
modest compared with some other malignancies. For example,
solid organ transplant recipeints have a 65–100-fold increased risk
of developing cutaneous squamous cell carcinoma.225

Matin et al.226 have suggested that the proportion of
melanomas developing from nevi may be slightly higher in
transplant recipients based on results from a larger study.
However, the relative proportion of nevi developing from nevi
versus de novo in transplant recipients has not been specifically
studied and is already known to be highly variable between
different studies.
Although it is clear that the adaptive immune system can

recognize and eliminate melanocytes under a variety of condi-
tions, it is unclear to what degree lymphocytes and other immune
cells interact with nevi under homeostatic conditions and whether
or not these interactions constrain growth and/or prevent
transformation to melanoma. Some murine models have shown
that in certain circumstances, cells with senescence phenotypes
can be recognized and eliminated by both innate and adaptive
arms of the immune system,227–229 however, this has not
specfically been studied in nevi. In tissue, banal acquired nevi
tend to be relatively pauci-inflammatory in contrast to melano-
mas, which in general show more robust lymphocytic
infiltration.230,231 CD8+ T cell infiltration and histologic evidence
of cytotoxic responses are not usually observed in nevi.52

Regression is a histologic phenomenon observed in some early
melanomas and is characterized by focal areas of apparent tumor
cell loss and replacement by fibrosis and inflammation.232 When
observed in histologic specimens, regression is usually partial,
rather than complete. Regression is typically not observed in nevi
other than the outer perimeter of halo nevi. The generally
accepted view is that regression reflects prior immune-mediated
destruction of a portion of the melanoma, however, this is based
mainly on inference from the clinical and histological appearance
of regressed melanomas. Interestingly, the T cells found in areas of
regression actually differ from the T cells in conditions such as
vitiligo and halo nevi.233,234 In regression, primarily CD4+, not CD8
+ T cells are present.233 CD8+ T cells predominate in vitiligo and
halo nevi. The significance of this observation is unclear. An
alternative hypothesis to explain regression is that tumor cell loss
is instead driven by genomic crisis occuring in incipient
melanomas and leading to apoptosis235–237 (this hypothesis will
be discussed further below).
Recently, type I interferon signaling was also shown to have a

tumor-suppressive role in the BrafV600E mouse model.202 In this
study, inactivation of type 1 interferon receptor, Ifnar1, resulted in
impaired growth arrest of BrafV600E-mutant melanocytes and
increased melanoma penetrance in vivo. The tumor-suppressive
effect of interferon signaling in this model appeared to be partially
melanocyte autonomous and partially melanocyte non-autono-
mous, suggesting one possibility is that interferon could stimulate
immune surveillance of nevus melanocytes, however, this was not
specifically studied. Interestingly, previous work has shown that
secretion of type I interferon by senescent cells is mediated by
activation of the DNA damage response.238 Therapeutic interferon
α (IFN-α) has been used as an adjuvant agent in melanoma,
however, its efficacy has been debated.239

The complex interplay between the immune system and
neoplastic cells is underscored by the observation that chronic
inflammation, can alternatively promote tumorigenesis over
time.240 Other cell types including some myeloid-derived cells
and macrophages can support the formation and progression of
cancer by multiple mechanisms.241 For example, Gr-1+ myeloid
cells have been shown to oppose senescence in a murine model
of prostate cancer.242 In melanoma, tumor-associated macro-
phages have been shown to facilitate melanoma progression by
various mechanisms.243,244 The role of chronic inflammation,
macrophages and other myeloid-derived cell populations have
not been closely studied with respect to nevus biology.
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The role of telomeres
Telomeres are protective structures at the ends of chromosomes
formed by a repetitive DNA sequence and an associated protein
complex (shelterin). The DNA portion of telomeres becomes
progressively shorter after each round of cell division and upon
reaching a critically shortened length triggers RS (as discussed
above). The number of cell divisions required for induction of this
process is called the ‘Hayflick limit’ and has been estimated to
require ~ 60 to 80 population doublings.85 The observations that
growth arrest after oncogene activation in vitro occurs rapidly,54

that telomerase expression cannot overcome this growth arrest,13

an estimated 13–16 rounds of cell division are required for
formation of a nevus, and that telomere length tends to be
preserved in nevi,54,86,245 all support the hypothesis that RS should
not contribute to nevus growth arrest.
In 2003, it was reported that the promoter of the telomere

reverse transcriptase (TERT) is mutated at very high frequencies in
melanomas, but not in nevi.37,246,247 Telomerase can extend
shortened telomeres and is often aberrantly re-activated in
cancers allowing proliferation beyond the Hayflick limit. Nevi
have been shown to have absent or relatively low telomerase
expression, but in melanoma telomerase is commonly expressed
at relatively high levels, especially in advanced lesions.248–250

TERT promoter mutations are thought to result in increased
TERT gene expression by creating binding motifs for ETS/TCF
transcription factors.251 Given that these transcription factors are
activated downstream of oncogenic pathways such as MAPK and
WNT, it is possible that in the presence of TERT promoter
mutations, activation of these pathways drives expression of TERT.
TERT promoter mutations have been shown to be associated with
increased telomerase expression in melanoma.252

In the context of these observations, one might predict that
TERT promoter mutations provide a selective advantage in
advanced melanomas, but might have relatively less important
role in nevi and in situ melanomas. However, recent findings by
Shain et al.98 have provided evidence somewhat contrary to this
hypothesis.98 They show that TERT promoter mutations are found
in combination with BRAF mutations in indeterminate melanocytic
lesions (dysplastic-nevus spectrum) and melanoma in situ,98

suggesting TERT promoter mutations provide an early selective
advantage.
One hypothesis to reconcile these seemingly disparate observa-

tions is that although telomeres are not critically shortened in
nevi, they become so during the transition to melanoma. Along
these lines, Bastian and colleagues have proposed that histologic
regression observed in early melanomas (as discussed above)
reflects the aftermath of a catastrophic genetic event that is
initiated by critical telomere shortening. In this hypothetical
model, melanocytic subpopulations of incipient melanomas that
are not able to overcome genetic stress induced by critical
telomere shortening undergo apoptosis, resulting in the loss of
areas of neoplastic melanocytes.235,236 In continuing with this line
of reasoning, this group has also proposed that telomere
shortening actually does occur in nevi as patients age and
explains the eventual regression of nevi in older patients. In this
model, melanocytes in nevi would be predicted to slowly replicate
overtime leading to critical telomere shortening that drives
disappearance of nevi after RS. Although intriguing, to date, there
is little experimental evidence to directly support this hypothesis.
An alternative hypothesis is that TERT expression provides a

telomere-independent function that is important in early stages of
melanomagenesis. For example, TERT has been shown to promote
C-MYC stabilization;253 C-MYC is known to suppress growth arrest
phenotypes in melanoma.171 Telomerase has other telomere-
independent functions, which may also be important and have
been recently reviewed.254 Last, oncogene activation has been
shown to cause telomere dysfunction, which can induce growth

arrest even in the presence of non-critically shortened telomeres
through induction of DNA damage responses.255–257 It is possible
that TERT expression may also relate to this observation in some
way, however, telomere dysfunction has not been well documen-
ted in nevi.
The importance of telomere biology in melanocytic neoplasia is

underscored by the observation that inherited mutations con-
ferring an increased risk of melanoma cluster on genes that
encode components of the telomere shelterin complex, in
addition to TERT itself. These genes include POT1, ACD and
TERF2IP.258–261 It has curiously even been reported that inherited
variation in telomere length correlates with both total nevus
number and nevus size.19 An improved understanding of the role
that telomeres and TERT promoter mutations have in melanocytic
neoplasia has the potential to significantly advance our under-
standing of factors regulating early stages of melanoma formation.

The role of PTEN, PI3K and AKT
PTEN is a tumor suppressor in the PI3K/AKT pathway. Functional
data from murine models and observations in human lesions
strongly implicate PTEN in restricting BRAFV600E-induced melano-
magenesis in vivo; perhaps more convincingly that any other
proposed mechanism of growth arrest after BRAF activation in
melanocytes.
The PI3K/AKT and mTOR signaling pathways are central

regulators of cell growth. These pathways are highly conserved
and are typically activated downstream of receptor tyrosine
kinases, but are also regulated by sensors of intracellular
conditions.262 Activation of PI3K signaling results in activation of
PDK1, which in turn activates the critical downstream kinase, AKT
(Figure 5). PI3K and AKT signaling is also highly integrated with
mTOR signaling (discussed in more detail below). PTEN, through
its lipid phosphatase activity is a critical inhibitor of the PI3K/AKT
pathway and considered a canonical cancer tumor suppressor.263

Although the discussion below will primarily focus on the role of

Figure 5. Overview of the PI3K/AKT/mTOR pathway. When activated
via mutation, this pathway provides a constitutive cellular growth
signal. PTEN is a central tumor suppressor upstream of PDK1/AKT.
LKB1 can inhibit mTORC1 via AMPK and TSC signaling. mTORC2
activates AKT by phosphorylating the S473 residue, whereas PDK1
activates AKT by phosphorylating T308. Activation of both mTORC1
and mTORC2 are required for progression of nevi to melanoma.
Canonical outputs of mTORC1 include S6K and 4E-BP1. Tumor
suppressors: red, oncogenic effect: blue. RTK, receptor tyrosine
kinase.
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PI3K signaling through AKT, PDK1 also has targets other than AKT,
which are likely also important in melanoma pathogenesis.264,265

In 2004, it was noted by Tsao and colleagues that PTEN
inactivation tended to occur more frequently in BRAF than NRAS-
mutant melanomas.266 In 2004, it was also noted at a functional
level that concurrent dysregulation of the MAPK and PI3K/AKT
pathways in cultured fibroblasts resulted in G1 to S progression,
whereas activation of either pathway in isolation did not.267 In
2006, Courtois-Cox and colleagues noted that constitutive
activation of MAPK signaling, which results in OIS in culture, was
associated with induction of negative feedback loops that
inhibited both MAPK and PI3K/AKT signaling. These data
importantly suggested that after activation of MAPK signaling,
negative feedback to PI3K/AKT helps constrain proliferation as
part of OIS phenotypes in culture.95 Along these lines, in 2008,
Cheung and colleagues reported that BRAFV600E can cooperate
with AKT3 to drive early melanoma formation in vitro,268,269 again
suggesting coordinated dysregulation of these two pathways is a
potent oncogenic driver. Although the exact feedback loops that
are important in melanoma need to be more clearly defined, one
group has shown that BRAF activation leads to specific negative
regulation of AKT signaling by feedback inhibition of the mTORC2
component Rictor (regulation of Akt by mTORC2 is discussed
below).270

In 2009, it was noted by our lab that simultaneous BrafV600E

mutation and Pten inactivation showed tremendous synergy in
driving melanoma development in a mouse model (Braf/Pten
model). As discussed above, BrafV600E mutation alone induces
formation of mouse nevi, but rarely melanoma, even with long
latency. However, when Pten is simultaneously inactivated in this
model (Braf/Pten model), detectable growth arrest is no longer
observed and unabated melanocytic proliferation ensues without
delay, leading to synchronous formation of innumerable melano-
mas and rapid lethality from overwhelming tumor burden within
3-4 weeks (Figure 4).
The phenotype observed in the Braf/Pten model strongly

supports the hypothesis that Pten has a central role in restricting
melanoma formation after activation of MAPK signaling. Data
published by Vredeveld and colleagues supports and extends this
hypothesis. They show that that Pten depletion in already
established BrafV600E-induced nevi using an shRNA approach also
results in melanoma formation. These data suggest that Pten
remains an important tumor suppressor in established nevi and
that inactivation of Pten and activation of PI3K/Akt is a mechanism
by which nevi may progress to melanoma.271 Activation of PI3K/
Akt signaling was also shown to have a similar effect in a mouse
model of pancreatic neoplasia based on activated Ras (RasG12D).272

Analysis of human lesions also supports the important role of
PTEN in restricting melanoma formation. Immunohistochemical
staining for PTEN tends to be strong and uniform in melanocytic
nevi.273,274 In contrast to nevi, PTEN is dysregulated in melanoma.
Complete loss of PTEN staining occurs in about ~ 1/3 of
melanomas, with reduced or altered expression found in
another ~ 1/3.274 PTEN inactivation occurs by mutation in a
small subset of melanomas, but is more commonly silenced
epigenetically.98,274–277 As would be predicted based on these
observations, levels of AKT activation have been found to be
lower in nevi relative to melanomas using phospho-specific
antibody staining.278–280 Immunohistochemical analysis of con-
tiguous nevus-melanoma pairs also shows that although nevus
portions of the lesion tend to have high PTEN expression and
low levels of AKT activation; the melanoma portions tended to
show reduced PTEN expression and increased levels of activated
AKT.271

As discussed above, PTEN inactivation is enriched in BRAF-
mutant melanomas suggesting that there may be a particularly
potent synergy between BRAFV600E and PTEN loss.37,266,281 These
two mutations tend to be enriched in non-CSD melanomas,16,51

suggesting that these mutations may define a biological subset of
melanomas that tend to be less related to chronic ultraviolet
exposure, more frequently associated with a nevus precursor, and
affect relatively young patients.

The role of mTOR signaling
PI3K/AKT signaling is tightly integrated with mTOR signaling,
which occurs as part of two distinct complexes, mTORC1 and
mTORC2. mTORC1 integrates signals from growth factors, other
pathways, and sensors of cellular nutrient, energy, and redox
status to control protein synthesis and other anabolic
processes.282 PI3K/AKT is a potent upstream regulator of mTORC1
and provides a strong activation signal to the complex via
inhibition of TSC and PRAS40.282 mTORC2, is nutrient insensitive,
but is also thought to be activated downstream of growth factor
signaling. mTORC2 mediated phosphorylation of AKT on S473 is
required for full AKT activation282 (Figure 5).
In the Braf/Pten model, constitutive activation of both mTORC1

and mTORC2 is observed.59,60 As mTORC1 is a highly conserved
output of activated PI3K/Akt signaling, and we found that the
mTORC1 inhibitor rapamycin inhibits melanoma growth in the
Braf/Pten model,59,60 we hypothesized that mTORC1 activation
was essential to the effect of Pten loss in Braf-mutant melanocytes.
To test this hypothesis, we generated mice with Braf activation in
the context of either Lkb1 (Braf/Lkb1) or Tsc1 (Braf/Tsc1) inactiva-
tion, which result in isolated activation of mTORC1 without
directly affecting mTORC2 activity.60 Interestingly, constitutive
activation of mTORC1 abrogated growth arrest of nevi, however,
full transformation to melanoma did not occur as in the Braf/Pten
model (Figure 4). In these models, confluent melanocytic
neoplasia, rather than formation of discrete nevi was observed;
however, although mice were tracked for 41 year, the
melanocytic neoplasms in this model never exhibited malignant
behavior such as uncontrolled or invasive growth, a Warburg
metabolism, or metastasis.
Lack of a fully malignant behavior in the Braf/Lkb1 and Braf/Tsc1

models is likely at least partially due to well-defined negative
feedback loops induced by constitutive activation of mTORC1,
which oppose activation of mTORC2.282 Interestingly, we found
that Cdkn2a inactivation in the Braf/Lkb1 model enabled
simultaneous activation of mTORC1 and mTORC2 leading to rapid
melanoma formation.60 The mechanism by which Cdkn2a
inactivation permits mTORC2 activation in this model is unclear,
but may be related to novel roles of Ckdn2a in regulating cellular
metabolism. For example, Cdk4 was recently shown to control
cellular glucose uptake in addition to cell cycle control.100 Arf has
also been shown to regulate cellular metabolism.101

The central importance of mTORC2 in melanoma pathogenesis
was also recently illustrated by our lab using the Pten/Braf/Dnmt3b
model in which Dnmt3b mediated repression of miR-196b is
required to alleviate inhibition of mTORC2 signaling by targeting
of the mTORC2 component Rictor.142 Without this activity of
Dnmt3b, full activation of mTORC2 and formation of melanoma
does not occur. This work uncovered an unanticipated epigenetic
checkpoint that regulates full mTOR activation in the progression
of nevi to melanoma. The oncogenic role of Rictor in human
melanoma is supported by the observation that the RICTOR
gene is frequently amplified in melanoma.148 Rictor has been
shown to be essential for melanoma formation in other models as
well.283

Analysis of human melanocytic lesions supports the hypothesis
that activation of both mTORC1 and mTORC2 are important in
melanoma, as the activity of both complexes tends to be relatively
low in in nevi, but high in melanoma. For example, activation of
mTORC1 substrates such as ribosomal protein S6 are only rarely
present in nevi, but frequent in human melanomas.284 Similarly,
levels of eukaryotic initiation factor (eIF-4E), which is inhibited by
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mTORC1 substrate eIF-4E binding protein 1 (4E-BP1) are also
significantly lower in nevi than in melanoma.285 mTORC2 activity
has similarly been shown to be lower in nevi than in melanoma.
For example, levels of phospho-AKT-S473, a phosphorylation
event catalyzed by mTORC2, are significantly lower in nevi than in
melanoma.60,278–280

Altogether, these observations support the hypothesis that
activation of PI3K/AKT signaling, including mTORC1 and mTORC2,
is central to the pathogenesis of BRAFV600E-mutant melanoma. A
requirement for simultaneous activation of mTORC1 and mTORC2
has been proposed in other malignancies and is also likely to be
important in NRAS and NF1-mutant melanomas. Although the
exact reason why concurrent activation is required for a fully
malignant phenotype is not completely clear, it has been
hypothesized to relate in part to metabolic reprogramming of
tumor cells.282,286 In this conceptual model, MAPK pathway
mutations would provide the initial proliferative signal, whereas
dysregulation of PI3K/AKT/mTOR signaling enables sustained
growth. In the absence of PI3K/AKT/mTOR dysregulation, BRAF
mutation would only induce transient proliferation as seen during
nevus formation. In melanomas that do not develop from a nevus
precursor, BRAF mutation may occur relatively later in an already
sensitized melanocyte with PI3K/AKT/mTOR dysregulation
(Figure 3). Pten loss in our murine models does not induce
analagous melanocyte proliferation in isolation.
Separate work has suggested that alternatively mTORC1 may

become increasingly activated in senescent cells and may help
enforce senescence phenotypes through activation of SASP.287–290

The reason(s) for the discrepancy in these observations with data
from mouse models are unclear, but may be related to differences
in cell type, in vitro versus in vivo effects, relative levels of mTORC1
activation, and/or difference in subcellular localization of activated
mTORC1.
Additional pathways such as Wnt/β-catenin are also important

in melanoma pathogenesis. We have shown that stabilization of
β-catenin through activating mutation, enhances melanoma
metastasis in the Pten/Braf mouse model.63,291 However, we also
showed that β-catenin stabilization results in an altered nevus
phenotype with more polymorphous lesion size and increased
pigment compared to Braf activation alone. In a lung cancer
model, β-catenin has been shown to cooperate with activated Braf
to suppress OIS via induction of c-Myc expression.292 Wnt/β-
catenin activation is thought to occur in ~ 1/3 of human
melanomas.293 The example of β-catenin illustrates that there
are many potential combinations of cooperative oncogenic hits in
human melanocytic lesions, which give rise to melanocytic
proliferations with heterogeneous and often overlapping clinical
and histologic features. The possible sequence and differential
contribution of various mutations, as recently described by Shain
and colleagues, is discussed below.

DYSPLASTIC NEVI
The above discussion has largely focused on banal acquired
melanocytic nevi, lesions for which most, if not all, dermato-
pathologists would agree on the diagnosis based on histologic
grounds. Other melanocytic lesions are not as clear cut and can
have some features of melanoma and some features of nevi,
either clinically, histologically, or both; creating a diagnostic gray
zone. Dysplastic and atypical nevi are terms used by clinicians to
describe lesions with concerning histologic or clinical features,
respectively. As part of clinical practice, histologically dysplastic
nevi are often graded based on the degree abnormality into
categories of mild, moderate and severe dysplasia; with severe
dysplasia bordering on melanoma, but not quite meeting
diagnostic criteria. This system of grading histologic dysplasia
and its implications are controversial because of a lack of
consensus terminology and disagreement over clinical

management of these lesions. Further, this grading system implies
that progression through different degrees of dysplasia toward
melanoma occurs in a linear, progressive fashion.294,295 However,
the natural history and biologic significance of dysplastic nevi is
not well characterized. For example, it is not known what
proportion of dysplastic nevi develop de novo versus what
percentage could represent evolution of previously banal nevi. It
should be noted that in the vast majority of cases, definitive
histological features of banal nevi and dysplastic nevi are not
observed in the same lesion, suggesting progression from one to
the other is probably rare.
The relationship of dysplastic nevi to melanoma is also

incompletely understood. For example, it is unclear if individual
dysplastic nevi progress to melanoma at higher rates than banal
nevi. In fact, this seemingly straight forward question is difficult to
study directly as to establish a diagnosis of dysplasia, the lesion
must be biopsied (usually fully removed). Further, clinical aytpia
does not necessarily correlate with histologic dysplasia,296

suggesting these lesions cannot reliably be identified clinically
and followed. Several studies have indirectly addressed this
question by comparing the frequency with which melanomas are
associated with the remnants of banal nevi versus the remnants
dysplastic nevi.64,297–301 These analyses have generally shown that
dysplastic nevi tend to be associated with melanomas at similar
rates as banal nevi, however, this observation may be confounded
by the relative abundance of banal nevi relative to dysplastic
nevi.294,295

A recent study by Shain et al.98 found that melanocytic lesions
in the diagnostic gray zone between nevi and melanoma may be
genetically distinct from banal nevi. This group found that
whereas banal nevi typically have BRAFV600E mutation only,
ambiguous lesions tended to have NRAS mutations and
BRAFnon-V600E mutations, as well as TERT promoter mutations. In
this excellent work, the authors also address the sequence in
which mutations are likely to have occurred. Other studies have
also found relatively lower rates (~60%) of BRAFV600E mutation in
dysplastic nevi, compared to ~ 80% in banal nevi.38,40,91,302,303

These data suggest that histologic dysplasia may hold a mean-
ingful, lesion intrinsic biologic significance and also implies that
dysplastic nevi are often likely not derived from previously banal
nevi. It also suggests that BRAFV600E-mutant and non-BRAFV600E-
mutant melanomas may show distinct natural histories. Despite
these observations by Shain and colleagues, however, it is still not
clear that histologically dysplastic lesions have an increased risk of
progression to melanoma compared to their banal counterparts,
they may just be more morphologically similar to melanoma
histologically. Further work will be required to better characterize
the relationship among benign nevi, histologically dysplastic nevi
and melanoma.
Despite the controversy in this area, a history of a histologically

dysplastic nevus is still clinically significant for patients. At a
population level, patients with a history of nevi with increasing
histologic dysplasia carry a dose-dependent increase in the overall
risk of developing melanoma.304,305 This increased risk appears
distinct from the individual lesion actually biopsied and diagnosed
as dysplastic. It is unclear if this increased risk is related to
exposure to mutagens such as ultraviolet light, an inherent
genetic susceptibility to melanocytic neoplasia, or a combination
of both.

STABLE CLONAL EXPANSION
OIS is a paradigm that has been used to understand growth arrest
after oncogene activation and has significantly advanced our
understanding of neoplasia broadly, including the importance of
cooperation between multiple oncogenes in cancer. However, this
terminology is slightly confusing when applied to melanocytic
lesions in tissue, as although cells express some markers of
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senescence, overall they appear to have relatively few phenotypic
features of senescent cells (as discussed above). In fact, in 2012
Tran et al.120 found that levels of the most commonly used
markers of OIS do not readily distinguish between nevi and
melanoma. These markers included p16INK4A, p53, SA-β-gal, PML,
SAHF (H3K9Me, 4′-6-diamidino-2-phenylindole) and DNA damage
response (γ-H2AX). Further, authors have also noted that one of
the most robust OIS markers, SA-β-gal, can be detected not only in
nevi but also in some late stage melanomas, including
metastasis.55,120,306 Although no individual histologic marker is
perfect, these observations suggest that thinking about nevi
slightly differently could be useful; we propose that stable clonal
expansion may be a more useful term in describing this process
moving forward than oncogene-induced senescence (Figure 6).
Several clinical observations suggest that nevi are not static

(senescent), even after they reach a seemingly final size. For
example, although the majority of nevi do appear to remain
relatively stable in size over time, a subset will enlarge. In clinical
practice, when enlarging nevi are noted, they are typically
biopsied to evaluate for melanoma. But, does enlargement of
nevi necessarily mean that growth arrest mechanisms have been
bypassed and progression to melanoma has occurred; as would
be implied based on the OIS hypothesis? To address this question,
Lucas and colleagues carefully tracked individual nevi over time in
adults using total body photography and biopsied lesions that
had changed appearance (including increased in size). They found
that increase in size alone in otherwise non-concerning lesions
rarely led to a diagnosis of melanoma.307 Similar studies have also
shown that most enlarging nevi, when biopsied, are diagnosed as
nevi (both histologically banal and dysplastic) and not
melanoma.79,308,309 These observations are not included to
suggest that enlarging nevi should not be biopsied to rule out
melanoma in clinical practice, but rather emphasize that from a

mechanistic standpoint tumor-suppressive mechanisms constrain-
ing progression to melanoma remain intact even during periods
of clinical growth. Multiple distinct mechanisms are likely
overlapping/redundant in the maintenance of benignity and
preventing uncontrolled outgrowth of nevi (Figure 6).
Interestingly, nevi can change appearance in other settings,

such as during pregnancy and after exposure to ultraviolet
radiation, changes that do not necessarily signify progression to
melanoma. For example, in pregnant patients, nevi can change
color, dermatoscopic appearance,310,311 increase in size312,313 and
show increased mitotic rates.314 Although melanoma does rarely
develop during pregnancy, this is very rare compared to these
common changes in benign nevi. Exposure to ultraviolet radiation
induces proliferation of nevus cells,315,316 yet this proliferation
does not equate to melanoma formation. In other words, nevi
appear to maintain the ability to respond physiologically to
various stimuli, including increasing proliferation rates while
maintaining their benignity and stability of growth arrest.
Additional observations suggest that, in fact, nevus melanocytes

actually retain significant proliferative potential. For example, nevi
can regrow in patients when only partially biopsied (incompletely
removed) and are known as recurrent nevi. In recurrent nevi, nevi
regrow to a similar size within the scar at the biopsy site, but then
again stop clinical growth and remain benign.317,318 Data from
in vitro work also suggests that nevus melanocytes retain
proliferative capacity. In several reports from the 1980s, it was
shown that nevus melanocytes derived from clinical specimens
can proliferate in culture, where they actually proliferate faster
than normal melanocytes grown under the same
conditions.319–321

In fact, close histologic examination of nevi shows that even
common banal nevi have mitotically active melanocytes, which
are present at low, but reproducible rates.322–324 Glatz et al.323

Figure 6. Mechanisms of growth arrest during stable clonal expansion. After acquisition of individual oncogenic mutations (BRAFV600E), growth
arrest of melanocytic nevi is established and maintained by multiple different, overlapping mechanisms. Progression to melanoma likely
requires simultaneous abrogation of multiple growth suppressive pathways.
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estimated that 0.024 mitoses are present per mm2 in histologically
banal melanocytic nevi. Using Ki67, a marker of actively cycling
cells, Soyer et al.84 reported that 0.78% of nevus melanocytes, an
estimated 2200 cells out of 282 000 cells per mm3 were cycling at
the time of biopsy. In nevi, proliferative activity is generally
restricted to the most superficial portions of the lesion322–324

(Figure 1).
If the above estimates are correct, and melanocytes in nevi do

slowly divide over time, then melanocyte attrition would be need
to be present at a similar rate to maintain a relatively stable size
over time. Along these lines, low rates of apoptosis have also been
reported in melanocytic nevi.325,326 It is unclear whether apoptosis
in nevi is a melanocyte intrinsic phenomenon or whether
apoptosis is induced by some other factor or cell type in the
microenvironment; for example, lymphocytes (though satellite cell
apoptosis is not routinely observed in nevi). Interestingly, contrary
to mitotic activity, which tends to favor the superficial portion of
the lesion, apoptotic cells predominate in deeper portions of the
dermis and are almost never found in superficial portions of the
lesion.326 Given these observations, it is tempting to hypothesize
that in nevi with a dermal component, histologic maturation
reflects a process in which melanocytes which are generated in
superficial portions of the lesion migrate over time into deeper
portions of the lesion where apoptosis occurs (Figure 1). However,
to date there is no experimental evidence to support this
hypothesis.
Shain et al.98 have proposed that continued proliferation of

nevus melanocytes over decades results in progressive and
ultimately critical shortening of telomeres, resulting in telomere
crisis. In this model, eventual telomere crisis, RS, and subsequent
clearance of nevus melanocytes might mechanistically underlie
the observed clinical regression of nevi with advancing age.98

Clinical nevus regression is associated with complete disappear-
ance of the lesion and replacement of melanocytes by fatty and
fibrotic tissue.20 However, as discussed above, critical shortening
of telomeres in nevi has not been documented to date,54,86

despite the apparent early selection for TERT promoter mutations
during transition to melanoma (as discussed above).
Overall, these observations suggest that although nevi demon-

strate tremendous clinical stability, behind the scenes nevus
melanocytes are seemingly fairly dynamic. Microscopically low
rates of proliferation are balanced by cell attrition. Nevus
melanocytes can respond to environmental stimuli and even
increase their proliferation without transforming to melanoma.
Stable clonal expansion is maintained by multiple, overlapping,
nearly fail-safe mechanisms including pathway intrinsic and
extrinsic feedback loops, epigenetic reprogramming, microenvir-
onmental effects, metabolic constraints and others (Figure 6).
These dynamic (rather than static/senescent) features of nevus

melanocytes are notable in the setting of the recent observation
that in clinically normal skin, individual oncogenic keratinocytic
clones are actually fairly ubiquitous.15 In this study, it was shown
that potent oncogenic mutations in NOTCH, TP53 and FGFR3 are
commonly present in morphologically normal keratinocytes and
result in the subclinical expansion of mutant clones, despite the
otherwise normal appearance of the skin clinically. These mutant
clones provide local selective advantage and ultimately result in
formation of a quilt-like pattern of partially overlapping, compet-
ing clones. These results are important as they show that despite
the presence of potent oncogenic mutations, normal cellular
function and tissue viability (including proliferation) is maintained.
Constitutive proliferation of keratinocytes is required to continu-
ously turnover skin and maintain epidermal barrier function; a
process that seemingly proceeds undisturbed within mutant
clones. In keratinocytes at least, a tumor-suppressive response that
involved complete and irreversible withdrawal from the cell cycle
would be predicted to result in disappearance of the clone
over time. Applied to melanocytes and other cell types, these

observations suggest that despite oncogenes which result in
clonal expansion, typical cellular function can be maintained.
This principle is likely to be important in other tissue types, even

those not constantly exposed to a potent mutagen like ultraviolet
light. Even in the absence of an outside mutagen, cells are
constantly exposed to new oncogenic insults generated during
DNA replication. For example, Chandeck and Mooi estimate based
on organism wide rates of cell division in humans (5 million every
second) and the inherent imperfection in DNA replication which
leads to an unrepaired point mutation in 1 out of every 1 billion
replicated bases, that by chance activating mutations occurring in
any given oncogene (for example, BRAFV600E) occur approximately
every 10 min somewhere in the body.52 Although the vast
majority of these cells are likely eliminated, never expand, or are
shed/lost, a subset likely clonally expand and suggest that the
body must deal with a constant barrage of mutant clones, yet
maintain tissue function. The importance of this effect is under-
scored by the more recent observation that differential rates of
cancer development in different tissue types correlates with the
frequency with which stem cells divide in that tissue. This
presumably incidentally leads to enhanced generation of mutant
oncogenes, which persist in stem cell populations.327

Taking these various considerations together, we favor the term
stable clonal expansion when referring to melanocytic nevi in
tissue, rather than oncogene-induced senescence. To us, this term
better reflects nevus phenotypes observed in mouse models and
in human lesions. In nevi, despite stable lesion size clinically, the
melanocytes in nevi are dynamic and multiple cooperative cell
intrinsic and extrinsic factors restrain continuous growth
(Figure 6). However, this process can be overcome as part of
progression to melanoma, with the acquisition of additional
pathogenic mutations and failure of a critical mass of growth
suppressive programs.
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